

	Techniques for studying Metal-Drug- DNA interactions
<	
<	
</th <th>Study of the interaction between the metal complexes</th>	Study of the interaction between the metal complexes
~	with DNA by different techniques :
~	
	Covalent Interaction
	Spectrophotometric Titration by UV-vis
-	
- 3	

<							
<							
-	[ADN]/([εa-εf) = [ADN]/(ɛa	a-eb) + 1/	[<mark>Kb</mark> (εa-εb)]	
-	V ADN	Vfinal, uL	[ADN]	[M]	ea	ef	[ADN] / (ef-ea)
	0	2500	0	7.98E-05	7.95E+03	7.95E+03	
<	5	2505	4.14E-06	7.97E-05	7.51E+03	7.95E+03	9.41E-09
- 3	10	2510	8.26E-06	7.95E-05	7.11E+03	7.95E+03	9.92E-09
	15	2515	1.24E-05	7.94E-05	6.81E+03	7.95E+03	1.09E-08
	20	2520	1.65E-05	7.92E-05	6.73E+03	7.95E+03	1.35E-08
	25	2525	2.05E-05	7.90E-05	6.71E+03	7.95E+03	1.66E-08
	30	2530	2.46E-05	7.89E-05	6.70E+03	7.95E+03	1.97E-08
	35	2535	2.86E-05	7.87E-05	6.69E+03	7.95E+03	2.28E-08
	40	2540	3.26E-05	7.86E-05	6.70E+03	7.95E+03	2.62E-08
	45	2545	3.67E-05	7.84E-05	6.67E+03	7.95E+03	2.88E-08
- 3							
-							
-							

$\frac{\overline{v}}{[L]}$	$= K_f$	(n –	v)											
Sco	tchard	s Equat	kon											
Abs 340	V DNA	V final	[ADN]	[M]	Aa	A0 (f)	Amax (b)	A0 - Aa	A0 - Ab	alfa	[1]	ι	v	v/IL
0.86866522	0	2000	0	2.59E-05	0.868665	0.868665	0.482765	0	0.3859	0	2.598-05	0	#DIV/0!	HOIV)
0.82639933	10	2010	3.52E-08	2.58E-05	0.826399	0.868665	0.482765	0.042266	0.3859	0.109525	2.29E-05	2.82E-07	8.022691	34967
0.78579235	30	2030	1.04E-07	2.55E-06	0.785792	0.868665	0.482765	0.082873	0.3859	0.214752	2E-06	5.48E-07	5.243499	26170
0.75061035	50	2050	1.72E-07	2.53E-05	0.75061	0.868665	0.482765	0.118055	0.3859	0.30592	1.75E-06	7.73E-07	4,481712	25556
0.71615648	70	2070	2.39E-07	2.58-06	0.716156	0.868665	0.482765	0.152509	0.3859	0.395202	1.51E-06	9.89E-07	4.135488	27326
0.68548632	90	2090	3.04E-07	2.48E-05	0.685486	0.868665	0.482765	0.183179	0.3859	0.474679	1.3E-06	1.18E-05	3.85334	29674
0.6581316	110	2110	3.69E-07	2.45E-06	0.658132	0.868665	0.482765	0.210534	0.3859	0.545565	1.12E-06	1.34E-06	3.632945	32566
0.63063192	130	2130	4.32E-07	2.43E-05	0.630532	0.868665	0.482765	0.238033	0.3859	0.616826	9.32E-07	1.5E-06	3,475557	37300
0.61130571	150	2150	4.93E-07	2.41E-05	0.611306	0.868665	0.482765	0.25736	0.3859	0.666906	8.02E-07	1.61E-06	3.256709	40584
0.59261942	170	2170	5.54E-07	2.39E-05	0.592619	0.868665	0.482765	0.276046	0.3859	0.715329	6.79E-07	1.718-06	3.08221	45361
0.57020998	190	2190	6.13E-07	2.37E-06	0.57021	0.868665	0.482765	0.298455	0.3859	0.773399	5.36E-07	1.83E-06	2.981643	5563
0.55199194	210	2210	6.72E-07	2.34E-05	0.551992	0.868665	0.482765	0.316673	0.3859	0.820609	4.2E-07	1.928-06	2.852346	68079
0.52308559	230	2230	7.29E-07	2.32E-06	0.523086	0.868665	0.482765	0.34558	0.3859	0.895515	2.43E-07	2.08E-06	2.852005	11751
0.51378202	250	2250	7.86E-07	2.35-06	0.513782	0.868665	0.482765	0.354883	0.3859	0.919624	1.85E-07	2.12E-06	2.694483	14563
0.49011469	270	2270	8.41E-07	2.28E-06	0.490115	0.868665	0.482765	0.378551	0.3859	0.980954	4.35E-08	2.24E-06	2.661277	61236
0.48799133	280	2280	8.68E-07	2.27E-06	0.487991	0.868565	0.482765	0.380674	0.3859	0.986456	3.08E-08	2.24E-06	2.580626	83872
0.48749733	290	2290	8.95E-07	2.26E-06	0.487497	0.868665	0.482765	0.381168	0.3859	0.987736	2.77E-08	2.23E-06	2.494872	89942
0.48298502	300	2300	9.22E-07	2.25E-05	0.482985	0.868665	0.482765	0.38568	0.3859	0.999429	1.29E-09	2.25E-06	2.44026	1.95+
0.48276472	310	2310	9.49E-07	2.24E-05	0.482765	0.868665	0.482765	0.3859	0.3859	1	0	2.24E-06	2.362891	#DIV/

Data from	n UV-vis	experime	ent		
			Co	nstant bind	ing
Complex	% Hypochromism	Bathochromi sm (Δnm)	Neighbor exclusion	Scate	chard
~			$\kappa_{b}({\rm x10}^{5}{\rm M}^{*1})$	$\kappa_{b2}({\rm x10}^5{\rm M}^{-1})$	$K_{b1}(x10^7 {\rm M}^{-1})$
Au(CQ)(Cl)	21%	4	2,68 ± 0,09	2.37 ± 0.76	4.03 ± 0.87
[Au(CQ)(PPh3)]PF6	7.5%	3	4.50 ± 0.25	3.79± 0.01	1.84 ± 0.25
[Au(CQDF)(PPh3)]PF6	31%	5	0,79 ± 0.62	0.51 ± 0.25	0.92 ± 0.61
CQDF	24%	2	$1{,}02\pm0{,}15$	0.93 ± 0.21	1.38 ± 0.55

 DNA Melting Temperature a 	fter interaction with	metal complex
Compley	Tru	4.7.55
	1 III	47
[Au(CQ)(PPh ₃)] PF ₆	80.6 ± 0.4	4,7
[Au(CQDF)(PPh3)]PF6	85,4 ± 1,5	20,5
DNA	$64,9\pm0,1$	
CQDP	87,6 ± 0.9	22,7